A Symmetric $k$-Step Method for Direct Integration of Second Order Initial Value Problems of Ordinary Differential Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

An Implicit Rational Method for Solution of Second Order Initial Value Problems in Ordinary Differential Equations

In this article, we report an implicit rational method for solution of second order initial value problems in ordinary differential equation. We have presented local truncation error and stability property for the proposed method. We observed that the method has cubic rate of convergenceandA-stable. Numerical results for linear and nonlinear problems presented. These results confirm the accurac...

متن کامل

MODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS

We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.

متن کامل

Numerical Integration of Initial Value Problems in Ordinary Differential Equations

The approach described in the first part of this paper is extended to include diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for the numerical integration of stiff differential systems, and their efficiency is illustrated by means of some numerical examples.

متن کامل

Randomized and Quantum Solution of Initial-Value Problems for Ordinary Differential Equations of Order k

We study possible advantages of randomized and quantum computing over deterministic computing for scalar initial-value problems for ordinary differential equations of order k. For systems of equations of the first order this question has been settled modulo some details in [5]. A speed-up over deterministic computing shown in [5] is related to the increased regularity of the solution with respe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Missouri Journal of Mathematical Sciences

سال: 2013

ISSN: 0899-6180

DOI: 10.35834/mjms/1369746399